

NUESTRA TRAYECTORIA

SOLUCIÓN

Desde el primer día, nuestro principal objetivo es la satisfacción de nuestros clientes mediante un servicio rápido, eficiente y con una variada gama de productos, cubriendo todas sus necesidades.

EFICACIA

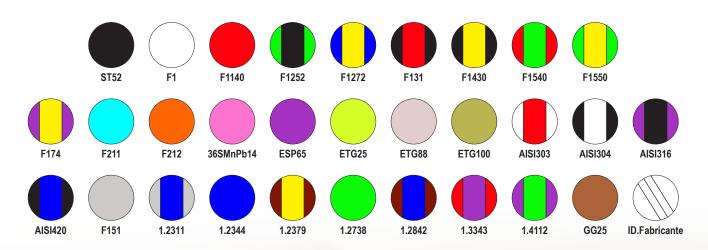
En la actualidad, este objetivo sigue plenamente vigente, ampliando nuestras relaciones comerciales con fabricantes y almacenes, tanto en el ámbito nacional como en la Unión Europea, lo que nos permite ampliar nuestro abanico de suministro.

Resuelva todas sus necesidades con una única gestión.

EXCELENTE SERVICIO

Disponemos de un excelente equipo humano de primera línea, preparado para asegurarles la confianza que depositan en nuestras empresas. Ofrecemos servicio propio de corte para series, unidades y rutas de reparto diarias para entrega de materiales.

- Rutas de reparto periódicas y camiones con grúa.
- Envíos con agencia a toda la península.


^{*} Todos los datos contenidos en este catálogo son a título informativo, nuestra empresa no se hace responsable de posibles errores en el mismo.

CONTENIDOS

4
6
8
9
. 10
. 12
. 13
. 14
. 16
. 18
. 20
. 22
. 24
. 26

IDENTIFICACIÓN Nuestras calidades más comunes

Nuestros perfiles

Cuadrado

Llanta Pasamano

Chapa

Hexagonal

Ángulo

Iconografía

TOLERANCIAS DIMENSIONALES ISO

		≤ 3mm	0/-0.010mm
	> 3	≤ 6mm	0/-0.012mm
	> 6	≤ 10mm	0/-0.015mm
h7	> 10	≤18mm	0/-0.018mm
۲	> 18	≤ 30mm	0/-0.021mm
	> 30	≤ 50mm	0/-0.025mm
	> 50	≤ 80mm	0/-0.030mm
	> 80	≤ 120mm	0/-0.035mm

			0, 0.000
		≤ 3mm	0/-0.025mm
	> 3	≤ 6mm	0/-0.030mm
	> 6	≤ 10mm	0/-0.036mm
64	> 10	≤18mm	0/-0.043mm
4	> 18	≤ 30mm	0/-0.052mm
	> 30	≤ 50mm	0/-0.062mm
	> 50	≤ 80mm	0/-0.074mm
	> 80	≤ 120mm	0/-0.087mm

		≤ 3mm	0/-0.014mm
	> 3	≤ 6mm	0/-0.018mm
	> 6	≤ 10mm	0/-0.022mm
h8	> 10	≤18mm	0/-0.027mm
h	> 18	≤ 30mm	0/-0.033mm
	> 30	≤ 50mm	0/-0.039mm
	> 50	≤ 80mm	0/-0.046mm
	> 80	≤ 120mm	0/-0.054mm

		≤ 3mm	0/-0.040mm
	> 3	≤ 6mm	0/-0.048mm
	> 6	≤ 10mm	0/-0.058mm
h10	> 10	≤18mm	0/-0.070mm
7	> 18	≤ 30mm	0/-0.084mm
	> 30	≤ 50mm	0/-0.100mm
	> 50	≤ 80mm	0/-0.120mm
	> 80	≤ 120mm	0/-0.140mm

		≤ 3mm	0/-0.060mm
	> 3	≤ 6mm	0/-0.075mm
	> 6	≤ 10mm	0/-0.090mm
Ξ	> 10	≤18mm	0/-0.110mm
h11	> 18	≤ 30mm	0/-0.130mm
	> 30	≤ 50mm	0/-0.160mm
	> 50	≤ 80mm	0/-0.190mm
	> 80	≤ 120mm	0/-0.220mm

EQUIVALENCIAS APROXIMADAS DE DUREZA

BRINELL (HB)	VICKERS (HV)	C° ROCKWELL (HRC)	N/mm² (MPA)
726	852	65	2726
709	821	64	2627
690	793	63	2530
670	765	62	2423
651	736	61	2345
637	710	60	2275
616	685	59	2207
599	663	58	2139
581	642	57	2070
564	621	56	2011
546	600	55	1942
534	581	54	1893
519	562	53	1834
505	544	52	1785
490	527	51	1726
479	512	50	1678
467	496	49	1619
455	483	48	1560
440	468	47	1501
429	454	46	1442

BRINELL (HB)	VICKERS (HV)	C° ROCKWELL (HRC)	N/mm² (MPA)
420	442	45	1393
410	430	44	1354
400	418	43	1315
391	407	42	1258
382	396	41	1256
372	384	40	1216
365	375	39	1196
356	364	38	1158
349	355	37	1128
341	346	36	1109
334	337	35	1069
326	328	34	1040
320	321	33	1020
314	315	32	991
307	307	31	971
300	300	30	952
293	293	29	931
286	286	28	913
279	279	27	893
272	272	26	883

BRINELL (HB)	VICKERS (HV)	C° ROCKWELL (HRC)	N/mm² (MPA)
265	265	25	863
259	259	24	852
253	253	23	834
247	247	22	824
241	241	21	804
235	235	20	795
230	230	_	774
225	225	_	755
220	220	_	745
215	215	_	735
210	210	_	716
205	205	_	706
200	200	_	696
195	195	_	677
190	190	_	667
185	185	_	647
180	180	_	638
175	175	_	618
170	170	_	598

ACEROS PARA CONSTRUCCIÓN MECÁNICA Laminados | Calibrados

Son aceros de empleo universal, cuyas características y propiedades dependen básicamente de su contenido en C%. Adecuados para la fabricación de piezas estructurales y componentes mecánicos. Los aceros con contenidos en C% por debajo de 0,25% son fácilmente soldables.

CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	٧	W	Co	Al	Pb	Cı
F1 – S275JR	<=	<=	<=	<=	<=									
	0,21	0,20	1,50	0,035	0,035									
						L					Bi	ruto Lamina	do (+AR)	
Aplicaciones								es comunes I material e					, con resis	tencia
F114 – C45	0,42	<=	0,50	<=	<=	<=								
	0,50	0,40	0,80	0,045	0,045	0,40								
											В	ruto Lamina	do (+AR)	
Aplicaciones		viles, moto						nes. Se util ı. Las carad						sobre
ST52 – S355	<=	<=	<=	<=	<=									
	0,22	0,55	1,60	0,035	0,035									
					- /						В	ruto Lamina	do (+AR)	
Aplicaciones			universal p probeta tra		estructura	lles y comp	oonentes	mecánicos.	. Las carad	cterísticas	mecánica	s del mate	rial están	
S235JR	<=	<=	<=	<=	<=									
CAL – F1	0,17	0,40	1,40	0,035	0,035									
											2001 C	alihrado		
							_					alibrado		
Aplicaciones	Acero de rendimie	e bajo con ento, solda	tenido en (ables, con r	C% con un	a resisteno a la traccio	cia mínima ón y ductili	garantiza dad satisf	ida. Aptos pactoria.	oara la ma	yoría de a			s. Aceros d	e buei
	Acero de rendimie	e bajo con ento, solda	tenido en 0 ables, con r	C% con un resistencia	a resistend a la tracció <=	cia mínima ón y ductili	garantiza dad satisf	ida. Aptos p actoria.	oara la ma	yoría de a			s. Aceros d	e buei
F114	rendimie	ento, solda	ibles, con r	resistencia	a la tracci	ón y ductili	garantiza dad satisf	ada. Aptos pactoria.	oara la ma	yoría de a			s. Aceros d	e bue
Aplicaciones F114 CAL – C45	0,42	ento, solda	0,50	esistencia	a la tracci	ón y ductili <=	garantiza dad satisf	ada. Aptos pactoria.	para la ma	yoría de a		s comunes	s. Aceros d	e bue
F114	0,42 0,50 Contenio	<= 0,40	0,50 0,80	esistencia <= 0,045 , se puede	<= 0,045	ón y ductili <= 0,40 n algunas	dad satisf	actoria.			plicacione	s comunes		e buei
F114 CAL – C45 Aplicaciones	0,42 0,50 Contenio	<= 0,40	0,50 0,80 alto de C%	esistencia <= 0,045 , se puede	<= 0,045	ón y ductili <= 0,40 n algunas	dad satisf	actoria.			plicacione	s comunes		e buei
F114 CAL – C45 Aplicaciones	0,42 0,50 Contenic automóv	ento, solda <= 0,40 do medio-aviles, moto	0,50 0,80 alto de C% ores y cons	esistencia <= 0,045 , se puede trucción de	a la tracció <= 0,045 soldar con aparatos,	ón y ductili <= 0,40 n algunas así como	dad satisf	nes. Se util			plicacione	s comunes		e bue
F114 CAL – C45	0,42 0,50 Contenia automóv 0,38	do medio-aviles, moto	0,50 0,80 0,80 alto de C% res y cons	esistencia <= 0,045 , se puedetrucción de	a la tracción <= 0,045	on y ductilities 0,40 n algunas así como 0,90	dad satisf	nes. Se util	liza princip		con el secto	s comunes	ucción de	e buel

ACEROS PARA CONSTRUCCIÓN MECÁNICA Laminados | Calibrados

GAMA DIMENSIONAL F1 — S235JR — CALIBRADOS

Llantas & Pasamanos (entre caras mm.)

		_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_		_	_	_		_		_	$\overline{}$
mm	9	∞	9	12	4	15	9	18	20	22	52	30	35	40	45	20	22	9	65	20	75	80	90	100	5	120	130	140	120	160	180	700	220	250	300	350	400	450	200
2	Χ	Χ	Х	Χ	Χ	Х	Х	Χ	Χ		Х	Χ		Χ																									
3	Χ	Χ	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Х																							
4	Χ	Χ	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ		Χ																	
5	Χ	Χ	Х	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ													
6		Χ	Х	Х	Χ	Х	Х	Х	Χ	Χ	Х	Х	Χ	Χ	Х	Х	Х	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ	Х		Х										
7		Χ	Х			Χ			Χ	Χ	Х	Χ	Χ	Χ		Х																							
8			Х	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ		Χ	Χ				
10				Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Х	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Χ	Χ	Χ	Х		
12					Χ	Χ	Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ		Χ	Χ	Χ	Х		
14								Χ	Χ		Х	Χ		Χ		Х		Χ																					
15								Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Χ	Χ	Χ	Х	Χ	Х
16									Χ		Х	Χ		Χ		Х		Χ				Χ		Χ															
18									Χ		Х	Χ	Χ	Χ		Χ		Χ						Χ															
20											Х	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Х	Χ	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Χ	Х
25												Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Х	Χ	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х		Х
30													Χ	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Χ	Χ	Х	Х	Χ	Χ	Χ	Х		Χ
35														Χ	Х	Х	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ	Χ		Х		Χ	Χ							
40															Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Х	Χ	Х	Χ	Χ	Χ		Χ	Χ	Χ	Х		Χ
50																		Χ	Χ	Χ		Χ	Χ	Χ	Х	Χ	Х	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х		
60																				Χ		Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ		Χ	Χ	Χ	Х		
70																						Χ	Χ	Χ		Χ			Х										
80																								Χ	Х	Χ	Χ		Х										

Cuadrado (entre caras mm.)

 $\begin{array}{l} 3-4-5-6-8-9-10-12-14-15-16-18 \\ -20-22-25-28-30-32-35-40-45-50-55-60-65-70-75-80-85-90-100-110 \\ -120-140. \end{array}$

Redondo (diámetro mm.)

 $\begin{array}{l} 3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-\\ 19-20-22-24-25-26-28-30-32-34-35-36-38-39-40\\ -42-43-45-48-50-52-55-60-65-70-75-80-85-90-\\ 95-100-105-110-115-120-125-130-140-150-160. \end{array}$

Hexagonal (entre caras mm.)

 $\begin{array}{l} 6-8-10-11-12-13-14-15-16-17-18 \\ -19-20-21-22-24-25-27-30-32-35 \\ -36-38-40-41-42-45-46-50-55-60 \\ -70-80. \end{array}$

L					M	EDII	DAS	ángı	ılo F	1				
	mm	10	12	15	20	25	30	35	40	45	50	60	80	100
<u> </u>	2	Х	Χ	Χ	Χ	Χ								
ESPESOR ángulo	3		Χ	Χ	Χ	Χ	Χ	Χ	Χ					
R ai	4			Χ	Χ	Χ	Χ	Χ		Χ	Χ			
SO	5				Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ		
%	6								Χ	Χ	Χ	Χ		
ш	8												Х	Х
	10												Х	Х

	UNE	DIN	WNr.	AISI	OTRAS
EQUIVALENCIAS	F1 (lam.)	S275 JR	-	-	-
EN	ST52	S355 J0/J2/JR	-	-	-
	F1 (Cal.)	S235 JR	-	-	ST37
EQL	F1140	C45	-	1045	F5 / XC48
	F1252	42CrMoS4	1.7227	4140	-

GAMA DIMENSIONAL F114 — CALIBRADOS

■ Llantas & Pasamanos (entre caras mm.)

mm	9	8	9	12	14	15	16	9	20	22	25	30	35	40	45	20	22	09	65	02	75	80	06	100	120
2																									
3			Χ																						
4									Χ				Χ												
5			Χ						Χ		Χ	Χ	Χ	Χ		Χ		Χ							
6		Χ	Χ	Χ					Χ		Χ	Χ		Χ		Χ		Χ							
7		Χ				Χ			Χ		Χ														
8			Χ	Χ		Χ	Χ	Χ	Χ	Χ	Χ	Χ		Χ		Χ		Χ				Χ			
10				Χ		Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ	Χ		Χ		Χ		Χ	Χ	Χ	Х
12							Χ	Χ	Χ	Χ	Χ	Χ	Χ		Χ			Χ		Χ		Χ	Χ	Χ	
14									Χ	Χ	Χ				Χ										
15									Χ		Χ	Χ	Χ	Χ	Χ			Χ		Χ		Χ	Χ	Χ	Х
16									Χ		Χ														
18																									
20											Χ	Χ	Χ	Χ	Χ	Χ		Χ		Χ	Χ	Χ	Χ	Χ	Х
25												Χ	Χ	Χ	Χ	Χ		Χ		Χ		Χ	Χ	Χ	Х
30														Χ	Х	Χ		Χ		Χ		Χ	Χ	Χ	Χ
35																				Χ				Χ	
40																Χ		Χ		Χ		Χ	Χ	Χ	Χ
50																		Χ		Χ		Χ	Χ		Х
60																				Χ		Χ	Χ		

Cuadrado (entre caras mm.)

10 - 15 - 20 - 25 - 30 - 35 - 40 - 45 - 50 - 60 - 70 - 80 - 100.

Redondo (diámetro mm.)

 $\begin{array}{c} 5-6-8-10-12-14-15-16-18-19-20-22-24 \\ -25-26-28-30-32-35-36-38-40-45-50-52 \\ -55-58-60-65-70-75-80-85-90-95-100-105-110-115-120-130-150. \end{array}$

Hexagonal (entre caras mm.)

 $\begin{array}{l} 10-12-13-14-16-17-19-20-22-24-25-26 \\ -27-30-32-35-36-40-41-45-46-50-55-60-70-80. \end{array}$

MÁS OPCIONES DE SUMINISTRO:

Bajo medida, medidas partidas, pulgadas, etc.

ACEROS RECTIFICADOS

El proceso de rectificado, permite obtener muy buenas calidades de acabado superficial y medidas con tolerancias muy estrechas, que son muy beneficiosas para la construcción de maquinaria y equipos de calidad.

F114 RECT: Para piezas de maquinaria que requieren cierta resistencia, ejes, manguitos, tornillos. Se recomienda para temple superficial en múltiples aplicaciones.

ACERO PLATA: Acero rectificado con una gran dureza y una gran capacidad de corte una vez templado. Constituyen una clase especial de acero para trabajos en frío.

CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	V	W	Co	Al	Pb	Cu
F114 – C45	0,42	<=	0,50	<=	<=	<=								
	0,50	0,40	0,80	0,045	0,045	0,40								
		Rectificado h7												
Aplicaciones				, se puede trucción de					liza princip	almente e	n el sector	r de constr	rucción de	
Longitud comercial de las barras	6 metros	etros, realizamos corte a medida.												
MEDIDAS STOCK (mm)	8 - 10 - 120 – 13	0 - 12 - 14 - 15 - 16 - 17 - 18 - 20 - 24 - 25 - 26 - 28 - 30 - 32 - 35 - 40 - 42 - 45 - 50 - 55 - 60 - 65 - 70 - 75 80 - 85 - 90 - 100 - 110 - 130												
ACERO PLATA	1,10	0,15	0,20	<=	<=	0,50			0,07					
1.2210	1,25	0,30	0,40	0,030	0,030	0,80			0,12					
									Re h8 y reco		@<=	220 HB	62	– 65 HRC
Aplicaciones	punzone barra en	Acero para herramientas de gran tenacidad, especial para trabajos al impacto con resistencia al desgaste: herramientas neumáticas, bunzones para recalcado en frío, corte y troquelado de chapa gruesa en frío, cuños, herramientas para madera y cuchillas para corte de barra en frío. Fabricación de piezas de precisión: guías y vástagos, machos de roscar, fresas, herramientas de brocar, perforación, pernos expulsores, brocas y llaves, instrumentos quirúrgicos, escairadores, avellanadores, herramientas de grabado, taladros dentados, etc.												
MEDIDAS STOCK (mm)	2 - 2,50	2 - 2,50 - 3 - 4 - 5 - 6 - 6,5 - 7 - 8 - 8,5 - 9 - 10 - 11 - 12 - 14 - 15 - 16 - 17 - 18 - 20 - 22 - 25 - 30												
OTRAS MEDIDAS (Bajo consulta)	De diám	De diámetro 1 a 60mm. Barra de 1m. o 2m.												

SHS	UNE	DIN	WNr.	AISI	OTRAS
QUIVALENCIAS	F1140	C45	-	1045	F5 / XC48
EQUIN	ACERO PLATA	115CrV3	1.2210	L2	100 C3 / 107CrV3KU

BARRA CROMADA

El cromado-duro en la barra de acero, mejora su capacidad de resistencia al desgaste, así como a la corrosión, conservando las dimensiones de la pieza y aumentando su vida útil.

Las barras cromadas se encuentran en multitud de productos de diferentes sectores, como la fabricación de cilindros, maquinaria para gimnasios, bombas, automatismos, pistones de prensas, columnas, elevadores, elementos accesorios hidráulicos, etc.

CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	V	W	Со	Al	Pb	Cu
F114 – C45	0,40	0,15	0,40	<=	<=									
	0,50	0,30	0,040											
		Cromado												
Aplicaciones	Especia	Especialmente apto para vástagos de hidráulica y neumática, bulones, columnas, ejes, etc.												
42CrMo4	0,38	<=	0,75	<=	<=	0,80		0,15						
(F1252)	0,43	0,35	1,00	0,040	0,040	1,10		0,25						
		Tratado y Cromado												
Aplicaciones		Acero con dureza y buena resistencia a temperaturas inferiores a 500°C. Características mecánicas superiores a la barra cromada en calidad C45.												

TOLERANCIA	ISO f7
RECTITUD	0,5 / 2000 mm
ESPESOR Cr.	
Red. 6 a 20 mm	15/19 µ
Red. 20 a 180 mm	20/25 μ
Rugosidad máx.	0,25 μ
DUREZA SUPERFICIAL(Cr).:	Mín. 900 HV 0,1
SUPERFÍCIE:	
Red. 6 a 20mm	0,10/0,15µ
Red. 20 a 180mm	0,8/0,12µ
Rugosidad superficial máx.	0,2µ
RESISTENCIA A CORROSIO	ÓN. Según ISO 9227

SHS	UNE	DIN	WNr.	AISI	OTRAS
EQUIVALENCIAS	F1140	C45	-	1045	F5 / XC48
EQUIN	F1252	42CrMo4	1.7225	4140	42CD4

BARRA CROMADA	DIÁMETRO (mm)	(Rm) Mpa	(RP0.2) Mpa	(A5) %
	Ø ≤ 16	mín. 710	mín. 500	mín. 5
C45E	16 < ø ≤ 19,05	mín. 650	mín. 410	mín. 7
C43E	20 < ø ≤ 100	mín. 580	mín. 350	mín. 16
	100 < ø ≤ 200	mín. 560	mín. 275	mín. 16
	Ø < 16	1100 – 1300	mín. 900	-
	16 ≤ ø < 40	1000 – 1200	mín. 750	-
42CrMo4Q+T	40 ≤ ø < 100	900 – 1100	mín. 650	-
	100 ≤ ø < 160	800 – 950	mín. 550	-
	160 ≤ ø ≤ 250	750 – 900	mín. 500	-

TABLA DE TOLERANCIAS ISO f7 (mm.)											
-0,010 / -0,022											
-0,013 / -0,028											
-0,016 / -0,034											
-0,020 / -0,041											
-0,025 / -0,050											
-0,030 / -0,060											
-0,036 / -0,071											

ACEROS BONIFICADOS, DE TEMPLE Y/O PARA NITRURACIÓN

BONIFICADO: Es un proceso por el cual, las aleaciones de acero se fortalecen y endurecen, esto produce un material más duro dependiendo de la velocidad a la que se enfría. El material, a menudo es revenido para reducir la fragilidad. Los materiales bonificados mantienen la dureza del tratamiento desde la superficie al núcleo de la pieza.

NITRURACIÓN: Se aplica, principalmente, a piezas que son sometidas regularmente a grandes fuerzas de rozamiento y de carga, como pistas de rodamientos, camisas de cilindros, árboles de levas, engranajes sin fin, etc. Estas aplicaciones necesitan que las piezas tengan un núcleo con cierta plasticidad, que absorba golpes, vibraciones y además una superficie de gran dureza que resista la fricción y el desgaste.

CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	V	W	Со	Al	Pb	Cu
F1252	0,38	<=	0,75	<=	<=	0,80		0,15						
	0,43	0,35	1,00	0,040	0,040	1,10		0,25						
			85 – 100 Kg/mm²											
Aplicaciones	adecuad engrana	oto donde sean necesarias altas exigencias de resistencia y tenacidad en medianas y pequeñas secciones. Se puede nitrurar, es decuado para temple por inducción. Apto para esfuerzos de fatiga y torsión. Se utiliza, generalmente, en estado bonificado para ejes, agranajes, cigüeñales, cilindros de motores, bielas, rotores, árboles de turbinas, ejes traseros, en herramientas de mano como llaves, estornilladores. En la industria petrolera para taladros, brocas, barrenos, tubulares, partes de bombas, vástagos de pistón, espárragos, etc.												
F1272	0,30	<=	0,50	<=	<=	1,30	1,30	0,15						
	0,38	0,40	0,80	0,025	0,035	1,70	1,70	0,30						
									Tra	itado		ॐ 90	– 100 Kg/m	m²
Aplicaciones									ouena resil exión y cho		en grande	es espesoi	res: ejes, c	igüeñal
1.2738	0,35	0,20	1,30	<=	<=	1,80	0,90	0,15						
	0,45	0,40	1,60	0,030	0,030	2,10	1,20	0,25						
									Tra	itado		© 290	0 – 330 HB	
Aplicaciones									y buena te entes, ejes,			ara moldes	de inyecc	ión de

ACEROS BONIFICADOS, DE TEMPLE Y/O PARA NITRURACIÓN

CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	V	W	Co	Al	Pb	Cu
F131	0,95	0,10	0,20	<=	<=	1,40								
	1,20	0,35	0,40	0,040	0,040	1,80								
									Re	cocido		62	– 65 HRC	
Aplicaciones	fresas, h	nerramient	as para tra	abajar la m		zas de gra	n dureza ı	másica, po	rodillos o a ca ductilid ial.					
F143	0,47	0,15	0,70	<=	<=	0,90			0,10					
	0,54	0,40	1,00	0,035	0,035	1,20			0,20					
					- /				Re	cocido				
Aplicaciones									, destornilla a resilienci				c. Debido	a la
F1740	0,35	0,10	<=	<=	<=	1,40		0,15				0,90		
	0,45	0,35	0,65	0,040	0,040	1,60		0,35				1,20		
									Tra	ıtado		ॐ 90	– 110 Kg/m	m²
Aplicaciones	Acero para piezas de gran dureza exterior, buena resistencia y tenacidad en el núcleo. La dureza superficial una vez nitrurada oscila entre 1000 y 1100 Vickers (para diámetros <100mm). Partes de válvulas de alta presión y elevada fatiga, engranajes, husillos de extrusión, piñones.													

	UNE	DIN	WNr.	AISI	OTRAS
W	F1252	42CrMoS4	1.7227	4140	-
EQUIVALENCIAS	F1252	42CrMo4	1.7225	4140	42CD4
LEN	F127	34CrNiMo6	1.6582	4340	-
JIVA	-	40CrMnNiMo 8-6-4	1.2738	≈ P20+Ni	40CMND 8
EQI	F131	100Cr6	1.3505	L3	-
	F143	50/51CrV4	1.8159	6150	-
	F1740	41CrAlMo7-10	1.8509	-	-

ACEROS PARA CEMENTAR

Grupo de aceros, aleados, con bajo contenido en C%. Se utilizan para la fabricación de piezas que han de tener una gran dureza superficial y una buena tenacidad en el núcleo.

La **cementación** se aplica en todas aquellas piezas que deben poseer una gran resistencia al choque y tenacidad, junto con una gran resistencia al desgaste, como es el caso de los piñones, levas, ejes, etc. La **resistencia al desgaste** depende de la dureza de la capa cementada, depende del contenido de elementos formadores de carburos: Cr% y Mo%.

La **resistencia a la presión** se consigue con elementos de aleación como el Ni% y Mo%, aumentando la templabilidad del acero.

CALIDAD		0:					AII		W	\A/			DI			
CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	V	W	Со	Al	Pb	Cu		
F1540	0,10	0,10	0,30	<=	<=	0,50	2,25									
	0,15	0,35	0,60	0,040	0,040	0,80	3,00									
									Re	Recocido						
Aplicaciones	el núcle	o; elevada	tenacidad		na resiste	ncia 90 ÷	120 Kg/mn	n2. Se em	ie deban te plea en la t							
F1550	0,15	<=	0,60	<=	<=	0,90		0,15								
	0,21	0,40	0,90	0,25	0,025	1,20		0,25								
									Bru	uto Laminad	do (+AR)					
Aplicaciones	de 80 ÷	130Kg/mr de cemer	n2. Utilizad ntadas y te	do en la fal empladas:	oricación d piñones, e	e piezas d ngranajes,	le cierta re , ejes de é	sponsabili mbolo, árb	nentadas d dad que de poles de lev ido por la d	eban prese as, bulon	entar esa r es, etc. La	esistencia	en el núcle	eo		
F151	0,14	<=	1,00	<=	<=	0,80										
	0,22	0,40	1,40	0,025	0,035	1,30										
								,	Br.	uto Laminad	lo (+AR)			,		
Aplicaciones									icleo tenaz lores, engr				sección s	ometidas		
ESP65®	0,14	0,15	1,00	<=	0,020	0,80							0,15			
	0,19	0,40	1,30	0,035	0,035	1,10							0,30			
									Ca Ca	librado	© 500 – 74	0 N/mm²	Máz	x. 60 HRC		
Aplicaciones	Material para cementación de fácil mecanización con Pb%. Permite elevadas velocidades de corte, aumentando la vida útil de las herramientas, así como, una menor vigilancia de las máquinas. Especialmente diseñado para piezas torneadas con un alto porcentaje de arranque de viruta y/o una geometría difícil (ruedas dentadas y helicoidales, coronas y engranajes, piñones, etc.). Material apto para el conformado en frío: doblado, plegado, recalcado, laminado de roscas y forjado.															

AS	UNE	DIN	WNr.	AISI	OTRAS
EQUIVALENCIAS	F1540	15NiCr13	1.5732	3310	14NC12
ALE	F1550	18CrMo4	1.7243	-	18CD4
aul	≈ F1516	16/20MnCr5	1.7131/1.7147	5115	-
ш	≈ F1516+Pb	-	-	-	ESP65®

HIERRO FUNDIDO — TIPO PERLÍTICO

FUNDICIÓN GRIS

Las propiedades de este tipo de fundición están determinadas por la presencia de finas láminas de grafito, composición mayormente ferrítica y excelente acabado superficial. Aun así es maleable y posee una buena capacidad de absorción a las vibraciones y una elevada resistencia a la fricción, ya que el grafito actúa como lubricante, aportando también, una resistencia eléctrica elevada junto con una excelente conductividad térmica. No se recomienda para endurecimiento o tratamiento térmico.

FUNDICIÓN NODULAR

Posee una estructura perlítica superior aportándole tanto mayor soporte a la abrasión como resistencia. Sus usos son muy variados en piezas de maquinaria y estructuras que soporten el desgaste. También se usa en aplicaciones a alta temperatura debido a su buena estabilidad dimensional. Puede ser templado por métodos convencionales.

CALIDAD	С	Si	Mn	Р	S	Mg	Cr	Ni	Мо	V	W	Co	Al	Pb
GG25	2,80	1,40	0,40	0,09	0,04									
(FUND. GRIS)	3,89	3,00	0,90	0,40	0,10									
						0			160	– 230 HB				
Aplicaciones	piezas d	e desgast	e, engrana	ajes y piño	las y guías nes, cilindr de guía, pie	os de lami	nación, ro	dillos de a	cería y hor	nos, molde				
GGG50	3,25	2,40	0,10	0,015	0,005	0,04								
(FUND. NODULAR)	3,70	3,00	0,40	0,08	0,020	0,07								
		● ■ O L												
Aplicaciones	En indus	stria secto	hidráulico	y neumát	tico, para fa	abricación	de máquir	nas y herra	mientas.					

	RANCIA . MÁXIMA (mm.)
SECCIÓN (mm.) (DIÁMETRO, ANCHURA)	GRIS / LAMINAR
20 ≤ 50	-0/+5
50 ≤ 100	-0/+7
100 ≤ 200	-0/+10
200 ≤ 300	-0/+12
300 ≤ 400	-0/+15
> 400	Por acuerdo

ACEROS DE FÁCIL MECANIZACIÓN

Aceros de uso muy común en decoletaje y mecanizado en serie, con composiciones químicas y características mecánicas, en su caso, según norma.

Alto contenido de S% tanto para obtener una mejora en la maquinabilidad, como para lograr un buen acabado superficial de los productos mecanizados. En los aceros al S%, se forma una viruta fragmentada que facilita el mecanizado. Al mismo tiempo, el S% reduce el coeficiente de fricción entre la viruta y la herramienta lo que se traduce en una mayor duración de esta.

Contenido de Pb% en porcentajes del orden de 0,20%, actúa eficazmente sobre la maquinabilidad, originando una mejora que puede estimarse en un 20-30% en relación con un acero de la misma composición base y que no tenga este elemento.

CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	٧	W	Co	Al	Pb	Cu
36SMnPb14	0,32	<=	1,30	<=	0,10								0,15	
	0,39	0,40	1,70	0,06	0,18								0,35	
									Ca	librado en f	río			
Aplicaciones									que decreo e, no esta				% у Мn%. [ra.	Debido al
F211	<=	<=	1,00	<=	0,34									
	0,14	0,05	1,50	0,11	0,40									
									Ca	librado en f	río			
Aplicaciones									grandes se as mecáni			mecaniza	das en torn	OS .
F212 (Pb)	<=	<=	1,00	<=	0,34								0,20	
	0,14	0,05	1,50	0,11	0,40								0,35	
									Ca	librado en f	río			
Aplicaciones	Las mismas que el F211, con la particularidad de que la velocidad de corte es superior por la adición de Pb%, si bien la resistencia es algo mayor que en los aceros al S%. No admite soldadura.													

ESTÁNDAR (En stock)	 Calibrados por estirado tolerancia h9 - h11 / torneado tolerancia h11. Barras biseladas para tornos automáticos. Longitud de suministro entre 3000 - 4000 mm. Pedido mínimo una barra.
FABRICACIÓN (Bajo pedido)	 Medidas especiales, tanto en diámetros como en longitud de barra. Disponible en pulgadas. Material laminado.

ACEROS DE FÁCIL MECANIZACIÓN

Las extraordinarias propiedades de los aceros especiales ETG® y ESP®, revolucionan la cadena de procesos y la fabricación en serie de piezas. Sus principales características son:

- Se suministra con una alta resistencia a la fatiga y al desgaste.
- → Debido a su proceso de laminación + calibrado, presentan una resistencia mecánica elevada.
- → Extraordinarias propiedades de mecanizado con virutas cortas y fragmentadas.
- → Escasas tensiones internas, conservando su forma estable incluso en mecanizaciones asimétricas.
- → Propiedades mecánicas uniformes garantizadas en toda la sección transversal, en todas las dimensiones y entre distintos lotes.
- → Comprobado al 100% contra defectos superficiales.

CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	٧	W	Со	Al	Pb	Cu	
ETG25®	0,24	0,10	1,20	<=	0,02										
	0,29	0,30	1,50	0,04	0,04										
		Calibrado										800 – 950 N/mm²			
Aplicaciones	Material con la ne roscada	ormativa d	apto para e tornillería	la deforma a 8.8 sin n	ición en frí ecesidad c	o, con muy le tratamie	y buenas p ento térmic	oropiedade o. Apto pa	s de dobla ra la fabric	do y recal ación de e	cado, rosc espárragos	ado y rem , piezas la	achado. Cu rgas recalo	umple cadas y	
ETG88®	0,42	0,10	1,35	<=	0,24										
	0,48	0,30	1,65	0,04	0,33										
									Ca	librado		@ 800) – 950 N/mi	m²	
Aplicaciones	(reducci	ón de cost	es y defori		en tratamie								de tratamie ción al C%		
ETG100 [®]	0,42	0,10	1,35	<=	0,24										
	0,48	0,30	1,65	0,04	0,33										
									Ca	librado		ॐ 960) – 1100 N/n	nm²	
Aplicaciones	(reducci	ón de cost	es y defori		en tratamie								de tratamie ción al C%		
ESP65®	0,14	0,15	1,00	<=	0,020	0,80							0,15		
	0,19	0,40	1,30	0,035	0,035	1,10							0,30		
	Calibrado Calibrado Son – 740 N/mm² Máx.								k. 60 HRC						
Aplicaciones	herramie de arran	entas, así ique de vir	como, una uta y/o una	menor vig	jilancia de a difícil (ru	las máquii edas dent	nas. Esped adas y hel	cialmente d icoidales,		ara piezas	s torneada	s con un a	util de las lto porcenta erial apto p		

AS	UNE	DIN	WNr.	AISI	OTRAS
EQUIVALENCIAS	-	28Mn6	1.5065	-	ETG25®
ALE	-	44SMn28	1.0762	-	ETG88®
	-	44SMn28	1.0762	-	ETG100®
ũ	≈ F1516+Pb	-	-	-	ESP65®

		Ø ESTIRADO		Ø TORNEADO	Ø HEXAGONAL ESTIRADO
Barras 3000mm.	h9	h11	h12	h11	h11
ETG25®	>4,4 - <27,53mm	-	_	_	_
ETG88®	>5 - <30mm	>32 - <70mm	>70,8 - <114,3mm	_	>13 - <27mm
ESP65®	>6,0 - <20,0mm	_	_	>21 - <70mm	_
ETG100®	_	>6 - <70mm	_	_	_

BLOQUES DE ACERO CORTADOS A MEDIDA

Acero aleado para **trabajos en frío**: 1.2379, 1.2842, 1.2510, 1.2550.

Acero aleado para moldes de plástico: 1.2311, 1.2738, F151.

Acero aleado para trabajos en caliente: 1.2343, 1.2344, 1.2714.

Acero **sin alear (F1140)**: Construcción de moldes y herramientas para piezas auxiliares, placas base y porta moldes sujetos a bajas oscilaciones.

CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	V	W	Со	Al	Pb	Cu
1.2311	0,35	0,2	1,3	<=	<=	1,80		0,15						
	0,45	0,4	1,6	0,035	0,035	2,10		0,25						
									Tra	ıtado		© 290) – 330 HB	
Aplicaciones				capacidad químico.					a moldes p es.	ara plástic	co. Tiene b	uena capa	cidad de p	ulido y
1.2344	0,35	0,80	0,25	<=	<=	4,80		1,20	0,85					
	0,42	1,20	0,50	0,030	0,020	5,50		1,50	1,15					
									Re	cocido	₩ Má	x. 229 HB	52	- 54 HR
Aplicaciones	fisuració metales	on en calie , coquillas	nte. Destin de fundici	nado para l	a fabricaci es para la i	ón de útile nyección a	s y herran	nientas de	senta una e uso univer ligeros, cu	sal, estam	ipación y e	extrusión e	n caliente	de
F151	0,14	<=	1,00	<=	<=	0,80								
	0,22	0,40	1,40	0,025	0,035	1,30								
									Bru	uto Laminad	do (+AR)			
Aplicaciones									úcleo tenaz vas, pasac					

BLOQUES DE ACERO CORTADOS A MEDIDA

CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	٧	W	Co	Al	Pb	Cu	
F114 - C45	0,42	<=	0,50	<=	<=	<=									
	0,50	0,40	0,80	0,045	0,045	0,40									
									Bru	uto Laminac	ción (+AR)	160 – 200 HB			
Aplicaciones	de autor		otores y co									n el sector aterial está			
1.2379	1,45	0,10	0,20	<=	<=	11,00		0,70	0,70						
	1,60	0,60	0,60	0,030	0,030	13,00		1,00	1,00						
				OPCIONAL	.: Templado				Re	cocido	₩ Má	x. 255 HB	58	- 61 HRC	
Aplicaciones	una vez	templado.	Apropiado	para hac	er punzone	es y matric	es de forn	na complic	ada, para	corte y cor	nformado,	para el pul cuchillas d ar la made	e corte, tro		
1.2842	0,80	0,10	1,90	<=	<=	0,20			0,05						
	0,95	0,40	2,10	0,030	0,030	0,50			0,20						
									Re	cocido	[™] Má	x. 259 HB	56	– 62 HRC	
Aplicaciones	Acero "Indeformable" de baja aleación y moderada-alta dureza de temple. Buena resistencia al desgaste y buena tenacidad después del templado + revenido. Universalmente, utilizado en herramientas de corte de mediana y pequeña sección: machos de roscar, brocas terrajas, cuchillas, moldes para materias plásticas, regletas y guías, etc. También disponible el grado 1.2510 (O1).														

	UNE	DIN	WNr.	AISI	OTRAS
	F5303	40CrMnMo7	1.2311	P20	40CMD8
	F5318	X40CrMoV5.1	1.2344	H13	Z40CDV5
AS	≈ F1516	16/20MnCr5	1.7131/1.7147	5115	-
EQUIVALENCIAS	F1140	C45	-	1045	F5 / XC48
ALE	F521	X153CrVMo12-1	1.2379	D2	Z160CDV12
on on	F5220	100MnWCrV5	1.2510	01	-
ш	F5229	90MnCrV8	1.2842	02	-
	-	40CrMnNiMo 8-6-4	1.2738	≈ P20+Ni	40CMND8
	F5242	60WCrV8	1.2550	S1	-
	F5307	55NiCrMoV7	1.2714	L6	55NCDV7

ACEROS PARA HERRAMIENTAS Y MATRICES

ACEROS PARA TRABAJO EN FRÍO

Medio-alto contenido en C% y aleados. Excelente estabilidad dimensional después de templado + revenido y alta resistencia a la compresión, combinada con una moderada tenacidad. No son soldables. Destinados a la fabricación de matrices, punzones, cortantes, cuchillas y herramientas en general.

ACEROS RÁPIDOS

Los aceros rápidos, son materiales que se utilizan en herramientas de corte rápido como por ejemplo: cuchillas de corte, hojas y discos de sierra, brocas para taladro. Adicionalmente, sus aplicaciones se extienden a los procesos de estampación y a las herramientas de corte preciso: laminado de roscas, cilindros de extrusión en frío y rodillos para perfiles. Estos materiales suelen tener una alta resistencia al ablandamiento a temperaturas elevadas.

	CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	V	W	Co	Al	Pb	Cu
	1.2379	1,45	0,10	0,20	<=	<=	11,00		0,70	0,70					
		1,60	0,60	0,60	0,030	0,030	13,00		1,00	1,00					
							OPCIONAL	_: Templado	1	Re	cocido	₩ Má	x. 255 HB	58	– 61 HRC
	Aplicaciones	complica	ada, para d	corte y con	formado, o	cuchillas d	e corte, tro	queles par	a acuñar,	do con dure matrices d y la nitrura	e estampa	ado y de ex	xtrusión en	frío, cilind	
ERIA	1.2842	0,80	0,10	1,90	<=	<=	0,20			0,05					
≓		0,95	0,40	2,10	0,030	0,030	0,50			0,20					
ACERO CUCHILLERIA							OPCIONAL	_: Templado	1	Re	cocido	₩ Má	x. 259 HB	56 -	- 62 HRC
ACER	Aplicaciones	Acero "Indeformable" de baja aleación y moderada-alta dureza de temple (58 - 62 HRC). Buena resistencia al desgaste y buena tenacidad después del templado + revenido. Universalmente, utilizado en herramientas de corte de mediana y pequeña sección: machos de roscar, brocas terrajas, cuchillas, moldes para materias plásticas, regletas y guías, etc. También disponemos de 1.2510 (O1).													acidad oscar,
	F143 – 51CrV4	0,47	0,15	0,70	<=	<=	0,90			0,10					
		0,54	0,40	1,00	0,035	0,035	1,20			0,20					
				- /			atado *Rec QT: 900 – 1		ılar	Re	cocido	₩ Má	x. 230 HB	Máx	x. 62 HRC
	Aplicaciones	presenta *Recoci	a un grano do Globula	muy fino y ar: Permite	, como co una mayo	nsecuenci r deforma	a, una bue	na resilien , su baja d	cia y resis	chillos, pun tencia al d la buenas d	esgaste.				
	1.3343 –	0,86	<=	<=	<=	<=	3,80		4,70	1,70	5,90				
	HSS M2	0,94	0,45	0,40	0,030	0,030	4,50		5,20	2,10	6,70				
										Re	cocido	₩ Má	x. 269 HB	64 -	- 66 HRC
	Aplicaciones	para fres en los tr herramie	sadora, ma abajos clá	achos, terro sicos en fr orte de pre	ajas, escai ío como: ro	riadores, c odillos de d	uchillas pa conformado	ra madera o en frío, e	, sierras c xtrusión e	lesbastar y irculares. n frío, esta os pulidos	Adicionalm mpado, pu	nente, este unzones y	material e matrices d	es utilizado e embutici	ón,

ACEROS PARA HERRAMIENTAS Y MATRICES

CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	٧	W	Co	Al	Pb	Cu
1.3243 – HSS	0,87	<=	<=	<=	<=	3,80		4,70	1,70	5,90	4,50			
	0,95	0,45	0,40	0,030	0,030	4,50		5,20	2,10	6,70	5,00			
									Re	cocido	₩ Má	x. 269 HB	64 -	- 67 HRC
Aplicaciones									aleación. C con una bi			uros como	fleje de a	cero
1.2436	2,00	0,10	0,30			11,00				0,60				
	2,30	0,40	0,60			13,00				0,80				
									Re	cocido	₩ Má	x. 255 HB	59.	- 62 HRC
Aplicaciones	Present	a la más a	lta resister	ncia al des	gaste y ma	intenimien	to de los fi	los de cort		is para cor		a de hasta dillos de co		
PM23 – HSS	1,00	<=	<=	<=	<=	3,75		4,75	2,70	5,50				
M3/2	1,25	0,40	0,40	0,030	0,030	4,50		5,20	3,75	6,70				
									Re	cocido	₩ Má	x. 260 HB	62	- 64 HRC
Aplicaciones	Acero rápido PULVIMETALÚRGICO para corte de acero al C% de alta y media aleación. Gracias a la tecnología de la pulvimetalúrgia poseen buena tenacidad y excelente maquinabilidad: extrusión en frío, estampado, cuchillas circulares, brocas, fresas, etc.								jia					

CHAPAS -	- ESPESORES DISPONIBLES SEGÚN CALIDAD (MM): Otras medidas bajo consulta.
1.2379	1,10 - 1,30 - 1,50 - 2,00 - 2,30 - 2,50 - 2,80 - 3,00 - 3,30 - 3,50 - 3,80 - 4,00 - 4,40 - 4,95 - 5,25 - 5,40 - 6,10 - 6,25 - 6,40 - 6,80 - 7,30 - 7,50 - 8,00 - 8,40 - 8,50 - 8,60 - 10,50 - 11,50 - 12,50 - 16,00.
1.2510	1,50 - 2,00 - 2,40 - 3,60 - 4,60 - 5,70 - 6,70 - 8,80 - 10,90 - 12,90 - 16,00.
1.2842	2,40 - 3,30 - 4,40 - 5,40 - 6,40 - 8,60 – 10,50.
1.3343 - HSS	1,00 - 1,10 - 1,25 - 1,50 - 1,60 - 1,70 - 1,80 - 1,85 - 2,00 - 2,25 - 2,30 - 2,50 - 2,75 - 2,80 - 3,00 - 3,30 - 3,50 - 3,70 - 3,80 - 3,90 - 4,20 - 4,25 - 4,30 - 4,40 - 4,75 - 4,80 - 5,00 - 5,25 - 5,40 - 5,80 - 6,40 - 6,80 - 8,00.
1.3243	1,25 - 1,50 - 1,70 - 1,85 - 2,00 - 2,30 - 2,50 - 2,80 - 3,30 - 3,75 - 4,25 - 4,40 - 4,75 - 5,25 - 5,40 - 6,25 - 8,60.
1.2436	2,00 - 2,30 - 2,50 - 3,00 - 3,30 - 4,40 - 4,80 - 5,40 - 6,40 - 8,60 — 10,50.
PM23 - HSS	1,50 - 1,70 - 2,00 - 2,30 - 2,80 - 3,00 - 3,50 - 3,80 - 4,50 - 5,00 - 5,50 - 6,00.
F143 (51CrV4)	0.5 - 1.0 - 1.5 - 2.0 - 2.5 - 3.0 - 3.5 - 4.0 - 5.0 - 6.0 - 7.0 - 8.0 - 10.0 - 12.0 - 15.0

	UNE	DIN	WNr.	AISI	OTRAS
	F521	X153CrVMo12-1	1.2379	D2	Z160CDV12
AS	F5220	100MnWCrV5	1.2510	01	-
EQUIVALENCIAS	F5229	90MnCrV8	1.2842	02	-
ALE	-	-	1.3343	M2	HSS 6-5-2 C
on on	-	-	1.3243	M35	HSS 6-5-2-5
ш	F5213	X210CrW12	1.2436	D6	-
	PM23	-	≈ 1.3344	M3/2	PM HSS 6-5-3
	F143	50/51CrV4	1.8159	6150	-

CHAPAS DE ACERO INOXIDABLE PARA CUCHILLERÍA

Los aceros inoxidables martensíticos son usados, principalmente, en la industria alimentaria, por su resistencia a la corrosión. Debido a su aleación, son materiales ferromagnéticos y por lo general, confieren su máxima resistencia a la corrosión una vez templados y revenidos; esto significa que no tienen resistencia a la oxidación en el estado recocido, que es su estado de suministro.

Para asegurar una larga vida al producto, debe darse una especial atención al estado final de la superficie de las herramientas: las superficies lisas, libres de imperfecciones como muescas, marcas de hilo, marcas de pulido y rayadas abrasivas, son esenciales para reducir el riesgo de oxidación. Exposiciones al agua de mar, pueden inducir a numerosos problemas de oxidación.

	CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	٧	W	Co	Al	Nb	Cu
	1.4034 –	0,43	<=	<=	<=	<=	12,50								
	AISI420 C	0,50	1,00	1,00	0,040	0,015	14,50								
					OPCI	ONAL: Tem	olado			Re	cocido	€ Má	x. 241 HB	51 -	- 53 HRC
	Aplicaciones											dad de puli estria del pl			
	1.4112 –	0,90	0,45	0,45	<=	<=	17,00		0,90	0,07					
	AISI440 B	0,95	1,00	1,00	0,040	0,008	19,00		1,30	0,12					
RÍA			OPCIONAL: Templado © Máx. 255 HB											54 -	- 57 HRC
CUCHILLERÍA	Aplicaciones	Excelent cuchillos	Acero inoxidable martensítico con mejor capacidad de conservación del filo y resistencia a las roturas en comparación con el Excelente material empleado en cuchillería profesional, en la industria de procesado de alimentos se utiliza en cortadores de cuchillos para carne de bovino y porcino, procesado de fruta y hortalizas, discos perforados y accesorios máquinas de picar, para la industria del procesado de pescado, etc.												lados,
ACERO	1.4125 –	0,95	≤	≤	≤	≤	16,00		0,40						
AC	AISI440 C	1,20	1,00	1,00	0,040	0,030	18,00		0,80						
										Re	cocido	₩ Má	x. 255 HB	54 -	- 59 HRC
	Aplicaciones	perfilado	os, aptos p	ara corte d	le producti	os congela	idos, carne	, pescado	, entre otr	dustria alimos accesor ación con A	ios de má	ara todo tip quinas de (1.4112).	o de cuchil corte y pica	llos planos ado. Una v	y ez
	1.4528 –	1,00	<=	<=	<=	<=	16,50		1,00	0,07		1,30			
	AISI440 B+Co	1,10	1,00	1,00	0,045	0,030	18,50		1,50	0,12		1,80			
										Re	cocido	₩ Má	x. 255 HB	52 -	- 58 HRC
	Aplicaciones		Las mismas que el AlSI440 B. Todo tipo de cuchillas planas. Este material tiene una excelente cap adición de Co%.											filo debido	a la

CHAPAS DE ACERO INOXIDABLE PARA CUCHILLERÍA

	CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	V	W	Co	Al	Nb	Cu
	NIOLOX®	0,75	0,30	0,30	<=	<=	12,20		1,00	0,80				0,6	
		0,85	0,50	0,50	0,045	0,030	13,20		1,20	0,95				0,8	
RÍA			Recocido © Máx. 255 HB 54 – 60											- 60 HRC	
O CUCHILLERÍA	Aplicaciones	a la corr aplicació	osión. Ade ones de cu o de la resi	emás de se chillos ind	er usado pi ustriales, c	rincipalmei londe se re	nte en la in equiere ma	dustria de intener el f	procesam filo de cort	gran durab niento de al e y una res s de reveni	imentos, e sistencia a	este acero la oxidació	se utiliza p ón modera	ara todas da. Para e	las I
ACERO		0,95					14,50		0,90	0,10		1,30			
1		1,05					15,50		1,20	0,30		1,60			
										Re	cocido	(Máx	c. 260 HB	MÁ:	X. 61HRC
	Aplicaciones		Acero inoxidable, versátil y funcional para cuchillería de alta gama de uso ari buena resistencia a la abrasión y corrosión, alta tenacidad, buena ductilidad,												

CHAPAS -	- ESPESORES DISPONIBLES SEGÚN CALIDAD (MM): Otras medidas bajo consulta.
1.4034	0,8 - 1,00 - 1,50 - 2,00 - 2,50 - 2,80 - 3,00 - 3,50 - 4,00 - 4,50 - 5,00 - 5,50 - 6,50 - 8,50 - 10,50 - 11,00 -13,00 - 16,00 - 17,00.
1.4112 y 1.4125	1,40 - 1,80 - 2,30 - 2,80 - 3,30 - 4,40 - 4,80 - 5,00 - 5,40 - 6,40 - 8,60 - 10,50 - 12,50 - 15,00 - 17,50 - 21,00.
1.4528	3,00 - 4,50 - 5,50 - 6,60 - 7,00 - 10,00 - 12,50 - 15,00.
NIOLOX®	3,00 - 3,40 - 4,00 - 4,50 - 5,00 - 5,40 - 6,00 - 6,50 - 6,70 - 7,30 - 8,50 - 10,50.
VG10 [®]	2,50 – 3,00.

	UNE	DIN	WNr.	AISI	OTRAS
	-	X46Cr13	1.4034	AISI420C	-
AS	-	X90CrMoV18	1.4112	AISI440B	-
EQUIVALENCIAS	-	X105CrMo17	1.4125	ASISI440C	-
ALE	-	X105CrCoMo18-2	1.4528	AISI440B+Co	-
l g	-	SB1	-	-	NIOLOX®
ш	-	-	-	-	VG10®
	-	-	-	-	LOMAX PM®
	-	-	-	-	CROMAX PM®

ACEROS INOXIDABLES

Como material de construcción e ingeniería, su principal característica, es su excelente resistencia a la corrosión debida a su alto contenido en Cr% y Ni%, reforzado a veces con Mo%. Pueden dividirse en tres categorías, destinados principalmente a la industria de la alimentación, química, farmacéutica, nuclear y aeroespacial.

AUSTENÍTICOS (AISI303, AISI304 y AISI316): Aceros no templables de estructura austenítica no ferromagnéticos. Empleado en la industria química, farmacéutica, fabricación de válvulas, etc.

MARTENSÍTICOS (AISI420 y AISI440):

Son templables hasta durezas elevadas y ferromagnéticos. Destinado a la fabricación de moldes para plásticos corrosivos, cubertería y menaje, hélices, grifería, tornillería, ejes, rodamientos y cuchillas, etc.

REFRACTARIOS (AISI310/S y AISI314):

No ferromagnéticos, alta resistencia mecánica, gran tenacidad y excelente resistencia a la oxidación a altas temperaturas, sus propiedades son debidas al alto contenido en Cr% y Ni%. La calidad 314 tiene mayor resistencia a altas temperaturas, buena maleabilidad y excelente resistencia química.

CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	V	W	Co	Al	Pb	Cu
AISI303	<=	<=	<=	<=	0,15	17,00	8,00							<=
	0,10	1,00	2,00	0,045	0,35	19,00	10,00							1,00
									Ca	ibrado				
Aplicaciones				canización ad de este							acero AIS	31304. Con	un conten	ido en
AISI304 - 304L	<=	<=	<=	<=	<=	17,50	8,00							
	0,070	1,00	2,00	0,045	0,015	19,50	10,00							
						0	L		Lai	minado / Ca	alibrado			
Aplicaciones			ra la indus eno líquido		a, aparato	s doméstic	os, alimen	tación, orr	namentacio	n, reactor	es y equip	os para la	industria r	nuclear,
AISI316 – 316L	<=	<=	<=	<=	<=	16,50	10,00	2,00						
	0,070	1,00	2,00	0,040	0,015	18,50	13,00	2,50						
						0	L		Lai	minado / Ca	alibrado			
Aplicaciones			ra la indus iores a 55		a, fotográfi	ica, textil, p	papelera, a	limentaria	y todas ad	quellas ind	lustrias qu	e emplear	ácidos y á	ilcalis a

ACEROS INOXIDABLES

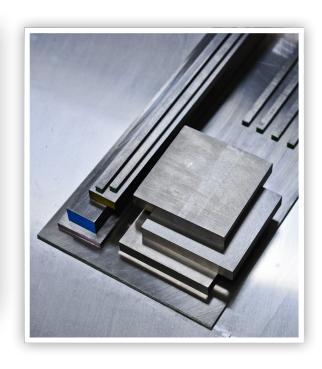
CALIDAD	С	Si	Mn	Р	S	Cr	Ni	Мо	٧	W	Co	Al	Pb	Cu
AISI420	0,16	<=	<=	<=	<=	12,00								
	0,50	1,00	1,50	0,040	0,015	14,00								
Recocido / Tratado														
Aplicaciones				corrosión nillería, est						nanuales,	bombas, i	ndustria al	limentaria,	
AISI310/S	<=	<=	<=	<=	<=	24,00	19,00							
	0,25	1,50	2,00	0,045	0,030	26,00	22,00							
					- (Lai	minado / Ca	alibrado			
Aplicaciones	suscept	ible a la fra	gilizáción		funcionan	niento cont	inuo entre	≈ 600 – 9	00 °C. Ópt	imo para:			1000 °C. E eléctricas,	S
AISI314	<=	1,50	<=	<=	<=	23,00	19,00							
	0,25	3,00	2,00	0,045	0,030	26,00	22,00							
	Laminado / Calibrado													
Aplicaciones	Acero soldable que tiene una excelente resistencia química a altas temperaturas hasta ≈ 1.100°C. Es susceptible a la fragilización duran el funcionamiento continuo entre ≈ 600 – 900 °C. De aplicación para la construcción de hornos, maquinaria, automóviles, en industria química, aparatos para aplicaciones a altas temperaturas, industria petrolera, cadenas para industria del cemento, muflas de recocido, rejillas esmaltadas, cestas de combustión, resistencias de calor, etc.								ia					

	UNE	DIN	WNr.	AISI	OTRAS
AS	-	X8CrNiS18.9	1.4305	AISI303	-
EQUIVALENCIAS	-	X5CrNi18.10	1.4301-1.4307	AISI304/L	-
ALE	-	X5CrNiMo17.12.2	1.4401-1.4404	AISI316/L	-
og	-	X20Cr13-X46Cr13	1.4021-1.4034	AISI420	Z20C13
ш	-	X8CrNi25-21	1.4845	AISI310S	-
	-	X15CrNiSi25-21	1.4841	AISI314	-

ACEROS ESPECIALES PRE-MECANIZADOS

PRE-MECANIZADOS CON TOLERANCIA EN LAS SEIS CARAS.

- → Selección de materiales con longitud de barra, principalmente, de 1 metro o 500 mm.
- → Plazo de entrega 5/7 días.
- Material presentado con papel protector y etiqueta identificativa.
- → Posibilidad de piezas a medida.


SUMINISTRO	F1140 / C45 / 1045	1.2083 / X40Cr14 / AISI420	1.2085 / X33CrS16 / ≈ AISI422+S	1.2162 / 21MnCr5 / ≈ F151
ESTADO SUMINISTRO	Recocido	Recocido	Tratado	Recocido
DUREZA SUMINISTRO	≤ 190 HB	≤ 240 HB	≈ 300 HB	≤ 220 HB
TOLERANCIA DE FRESADO	-0/+0.20 mm	-0/+0.20 mm	-0/+0.20 mm	-0/+0.20 mm
DUREZA TEMPLADO	Máx. 58 HRC	48 – 53 HRC	48 – 52 HRC	_
DUREZA CEMENTADO	_	_	_	56 -62 HRC
LLANTA FRESADA	Desde 4,0 X 20,0 mm hasta 150,0 x 450,0 mm	Desde 8,2 x 20,4 mm hasta 100,4 x 505,0 mm	Desde 8,2 x 20,4 mm hasta 100,4 x 505,0 mm	Desde 8,2 x 20,4 mm hasta 100,4 x 505,0 mm
CUADRADO FRESADO	Desde 10,0 hasta 150,0 mm	Desde 20,4 hasta 100,4 mm	Desde 20,4 hasta 100,4 mm	Desde 20,4 hasta 100,4 mm
CHAPA FRESADA	Desde 5,2 hasta 100,4 mm	_	_	_

¿Sabías que...?

- La tolerancia general en el espesor es

 -0.0mm/+0.20mm para las pletinas de 1 metro.
- Hay disponibles pletinas a 500mm con tolerancia en el espesor de -0.0mm/+0.05mm.
- Hay opción de piezas a longitud 150 200 300 -400 - 600 - 800mm en algunas calidades.
- Disponemos de servicio de premecanizado para piezas hasta 3000mm de longitud bajo pedido.
- Disponemos de servicio de "Placas-P" mecanizadas por todas las caras, para moldes, matrices, calibres y utillajes.
- Disponibilidad de bloques templados en calidad 1.2379 para electroerosión y corte por hilo.

ACEROS ESPECIALES PRE-MECANIZADOS

SUMINISTRO	1.2312 / 40CrMnMoS 8-6	1.2343 / H11 / X37CrMoV5-1	1.2379 / D2 / F521	1.2510 O1 / 1.2842 O2	1.4112 / X90Cr- MoV18 / AISI440B
ESTADO SUMINISTRO	Tratado	Recocido	Recocido	Recocido	Recocido
DUREZA SUMINISTRO	≈ 300 HB	< 230 HB	< 255 HB	< 230 HB	≤ 265 HB
TOLERANCIA DE FRESADO	-0/+0.20 mm	-0/+0.20 mm	-0/+0.20 mm	-0/+0.20 mm	-0/+0.20 mm
DUREZA TEMPLADO	_	48 – 53 HRC	54 – 61 HRC	60 - 65 HRC	56 – 58 HRC
LLANTA FRESADA	Desde 8,2 x 20,4 hasta 100,4 x 505,4 mm	Desde 4,2 x 10,4 hasta 150,4 x 505,4 mm	Desde 2,2 x 10,4 hasta 100,4 x 405,0 mm	Desde 2,2 x 10,4 hasta 100,4 x 505,0 mm	Desde 3,2 x 10,4 hasta 100,4 x 505,0 mm
CUADRADO FRESADO	Desde 10,4 hasta 150,4 mm	Desde 10,4 hasta 150,4 mm	Desde 6,2 hasta 150,4 mm	Desde 8,4 hasta 150,4 mm	Desde 10,4 hasta 100,4 mm
PLACA FRESADA	_	_	Desde 5,2 hasta 120,4 mm	_	_
BLOQUE RECOCIDO	_	_	Desde 15,0 x 80,5 hasta 150,0 x 300,5 mm	_	
BLOQUE TRIPLE TEMPLE (59-61 HRC)	_	_	Desde 15,0 x 80,5 hasta 150,0 x 300,5 mm	_	

¿Sabías que...?

Hay muchas otras calidades disponibles en **placa/pletina**:

- **-** 1.2363
- -1.2436
- -1.2767
- 1.7225 (F125+A)
- 1.2714+A / +QT
- 1.2316+QT
- Etc.

Y las siguientes en **redondo h8**:

- **-** 1.2379
- -1.2842
- 1.2343
- AISI440B
- **-** 1.4112
- 1.2312+QT
- **-** 1.2767

EQUIVALENCIAS	UNE	DIN	WNr.	AISI	OTRAS
	F1140	C45	-	1045	F5 / XC48
	-	X40Cr14	1.2083	AISI420	Z40C14
	-	X33CrS16	1.2085	≈ AISI422+S	Z35CD 17.S
	≈ F151	21MnCr5	1.2162	5120	20MC5
	F5302	40CrMnMoS 8-6	1.2312	P20+S	40CMD 8.S
	F5317	X37CrMoV5-1	1.2343	H11	Z38CDV5
	F521	X153CrVMo12-1	1.2379	D2	Z160CDV12
	F5220	100MnWCrV5	1.2510	01	-
	F5229	90MnCrV8	1.2842	O2	-
	-	X90CrMoV18	1.4112	AISI440B	-
	-	-	-	-	TOOLOX 33/44®
	-	X100CrMoV5	1.2363	A2	Z100CDV5
	-	45NiCrMo16	1.2767	6F7	45NCD16
	-	X38CrMo16	1.2316	≈ AISI422	Z35CD17
	-	X6CrNiMoTi17.12.2	1.4571	AISI316Ti	Z6CNDT17-12

EQUIVALENCIAS INTERNACIONALES TABLA 1 | 2

UNE	DIN	WNr.	AISI	OTRAS
F1 (lam.)	S275 JR	_	_	_
ST52	S355 J0/J2/JR	_	_	_
F1 (Cal.)	S235 JR	_	_	ST37
F1140	C45	_	1045	F5 / XC48
ACERO PLATA	115CrV3	1.2210	L2	100 C3 / 107CrV3KU
F1252	42CrMoS4	1.7227	4140	_
F1252	42CrMo4	1.7225	4140	42CD4
F127	34CrNiMo6	1.6582	4340	_
F131	100Cr6	1.3505	L3	_
F143	50/51CrV4	1.8159	6150	_
F1740	41CrAlMo7-10	1.8509	_	_
F1540	15NiCr13	1.5752	3310	14NC12
F1550	18CrMo4	1.7243	_	18CD4
≈ F1516	16/20MnCr5	1.7131 / 1.7147	5115	≈ 16MC5
≈ F1516+Pb	16MnCrS5+Pb	1.7139	_	ESP65®
GG25	GJL-250 C	5.1203	_	FUNDICIÓN GRIS
GGG50	GJS-500-7C	5.3203	_	FUNDICIÓN NODULAR
F2132	36SMnPb14	1.0765	_	≈ F113+Pb
F211	11SMn30/37	1.0715 / 1.0736	_	OPA
F212	11SMnPb30/37	1.0718 / 1.0737	12L14	_
_	28Mn6	1.1170	_	ETG25®
_	44SMn28	1.0762	_	ETG88®
_	44SMn28	1.0762	_	ETG100®
≈ F151	21MnCr5	1.2162	5120	20MC5
F5303	40CrMnMo7	1.2311	P20	40CMD8
F5318	X40CrMoV5.1	1.2344	H13	Z40CDV5
_	40CrMnNiMo 8-6-4	1.2738	≈ P20+Ni	40CMND 8
F521	X153CrVMo12-1	1.2379	D2	Z160CDV12
F5220	100MnWCrV5	1.2510	01	

DENOMINACIÓN HABITUAL

EQUIVALENCIAS INTERNACIONALES TABLA 2 | 2

UNE	DIN	WNr.	AISI	OTRAS
F5229	90MnCrV8	1.2842	O2	_
F5604	HSS 6-5-2 C	1.3343	M2	F550A
F5613	HSS 6-5-2-5	1.3243	M35	F550C
F5213	X210CrW12	1.2436	D6	_
F3405	X46Cr13	1.4034	AISI420C	_
_	X90CrMoV18	1.4112	AISI440B	_
F3425	X105CrMo17	1.4125	AISI440C	_
_	X105CrCoMo18-2	1.4528	AISI440B+Co	_
_	SB1	_	_	NIOLOX®
F3406	X20Cr13-X46Cr13	1.4021 - 1.4034	AISI420	Z20C13
F3404	X40Cr14	1.2083	AISI420	Z40C14
_	X33CrS16	1.2085	≈ AISI422+S	Z35CD 17.S
F3503	X5CrNi18.10	1.4301 - 1.4307	AISI304/L	_
F3508	X8CrNiS18.9	1.4305	AISI303	_
F353	X5CrNiMo17.12.2	1.4401 - 1.4404	AISI316/L	_
F5605	PM HSS 6-5-3	≈ 1.3344	M3/2	PM 23
_	_	_	_	VG10 [®]
F5302	40CrMnMoS 8-6	1.2312	P20+S	40CMD 8.S
F5317	X37CrMoV5-1	1.2343	H11	Z38CDV5
_	_	_	_	TOOLOX 33/44®
F5307	55NiCrMoV7	1.2714	L6	55NCDV7
F5242	60WCrV8	1.2550	S1	_
F536	X100CrMoV5	1.2363	A2	Z100CDV5
F5305	45NiCrMo16	1.2767	6F7	45NCD16
F5267	X38CrMo16	1.2316	≈ AISI422	Z35CD17
_	_	_	_	LOMAX PM®
_	_	_	_	CROMAX PM®
F3535	X6CrNiMoTi17.12.2	1.4571	AISI316Ti	Z6CNDT17-12

DENOMINACIÓN HABITUAL

Pol. Ind. Cova Solera Luxemburgo, 26 08191 Rubí | Barcelona

T. +34 935 880 608

llobregat@acerosllobregat.com www.acerosllobregat.com

Pol. Ind. Font de la Ventaiola Parcel·la 1 – Naus 4-5-6 08670 Navàs | Barcelona

T. +34 935 880 509

comercial@bagesacers.com www.bagesacers.com